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In this lecture, | will continue to consider Laplace transform, particularly for a 1%
order and a 2" order system. | will develop some insights into how these systems
behave both in the time domain in response to a step input, and in the frequency
domain (that is, in response to sinusoids at different frequencies).




Step Response of a 15t order system (DE1.3 L8 S3)

+ Consider what happens to the circuit shown here as =<0

the switch is closed att=0. We are interested in y(?). Y

+ Apply KVL around the loop, we get: I:I
d
()R +y(t) =x(t),buti = Cd_}tl therefore Q
dy LA

RCE+y=x

+ This is a simple first-order differential equation with )
constant coefficients.
+ We can model closing the switch at t=0 as: yh------ -
x(t) =V u(t)
+ Then the solution of the differential equation is: .
&) =v(1 —e ") u(® oL .
+ You should be familiar with this from Electronics 1 last

year: 1t =RC, the time-constant
PYKC 23 Jan 2020 EA2.3 ~ Electronics 2 Lecture 7 Slide 2

Let us first consider a simple RC circuit, which you have learn from last year. This
slide is taken from Lecture 8, slide 3. from DE1.3 last year. Here | assume that you
are familiar with solving first-order differential equations from your maths lectures.

We want to solve (x(t) = V u(t)): dy
C It +y = Vu(t)
dy_Vu(t)—y:dt _ dy
dt  RC RC Vu(t)—y

Integrate both sides, we get:

¢ . . .
L mu) —y) +4 where A is constant of integration

RC
Use boundary condition: when t=0, y = 0: RC =—In(Vu(t) —0) + A
Therefore = In(Vu(t))
t _ Vu(t)
ﬁ = ll’l(VU(t) y) + ln(Vu(t)) =In m

t Vu(t)

= o = = () = v(1 = e mu(e)




Modelling using Laplace Transform

- — L
Q x(t) = Vu(t) r% +y=x C—— yoy=vli-e _REC)u(t)
o Take LT of x(t): L{x()} = X(s) = L{Vxu(t)} = VXL{u(t)} = fo

+ Find transfer function H(s) of the circuit by taking the Laplace Transform of the
differential equation: sY(s) + Y (s) = X(s)

Y(s) 1
=HS) = ¥ mr1 1
A :i(t) = Vu(t) Y(s) = H(s)i((s) = VX =X—
| s-domain analysis
O =L ’ i L'y y(®) =
T H(s) =
1 s+ 1
X(s)=Vx-—
s
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In the previous slide, we use time domain analysis and differential equations. Now
let us move to the Laplace s-domain, and use Transfer function to do the same
analysis. The top diagram is the time domain view of things.

Let us first take the Laplace transform of the input x(t) = V u(t):
1
LA{x(t)}=X(s) =L{Vxu(t)} =VxL{u(t)} =Vx 5

Remember that, from L6 S13, we know the LT of unity step function u(t) is 1/s.

Now we take the Laplace transform of the differential equation, remembering from

L6 S15 that:
L {d_y} = sY(s)
dt)

Therefore:
Ys) 1 1/t
X(s) ws+1 s+1/t

H(s) =

Finally, we known Y(s) = H(s)X(s)
Therefore: 1 1/t
Y(S) = VsXx S_X

s+1/t

However, we are interested in y(t), not Y(s). So how do we convert from Laplace
domain back to time domain? For that, we need inverse Laplace Transform.




Forward & Inverse Laplace Transform

+ Remember: the definition of the Laplace Transform L is:

LIx(®)]=X(s)= [ : x()e ™ dt

+ The definition of the Inverse Laplace Transform £~} is:

o+jwm

_ 1
LT[XE)=x()=— [ X(s)e"ds, w —
2xj 2 o
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During the lecture, | will go through the next few slides quickly because these are
mostly included for completeness. We don’t usually perform Laplace Transform
mathematically by hand. Instead we would use a table and look the LT results up.
Nevertheless, you should at least remember the definition of the forward transform.

Here is a reminder of the equation for forward Laplace transform for a causal signal
is shown here. You need to remember this!

LIx()]=X(s)= [ wa(t)e‘” dt

The inverse Laplace transform is more complicated. It is defined below. You DO NOT
need to remember this.

o+jw
L7 [X(s)]=x(t) = L f X(s)e'ds, w— o
2'77; o-jw

For this course (and for most practical applications), we DO NOT calculate the
inverse Laplace transform by hand. Instead, we do most of the forward and inverse
transformations via looking up a transform a table. | have included these formulae
here just for completeness and for reference.




Laplace transform Pairs (1)

+ Finding inverse Laplace transform requires integration in the complex
plane — beyond scope of this course.

+ So, use a Laplace transform table (analogous to the Fourier Transform

table).
No. x(t) X(s)
* 1 3(t) 1
5 1
R u(t) 3
1
3 tu(t) o
n!
4 t"u(t) sn+l
PYKC 23 Jan 2020 EA2.3 — Electronics 2 Lecture 7 Slide 5

The table of Laplace transform pairs (going both directions) is taken from Lathi’s
book. The first TWO shown here are useful, particularly for signals and systems.

The first pair is the impulse function. The LT is the constant 1.

Pair 2 is the LT of the unity step function, and we have seen in L6 S13 that this is
computed to be 1/s.




Laplace transform Pairs (2)

* 5
6
7
* 8a
* 8b
* 9a
% 9

x(1f)

eMu(t)

te*u(t)

t"eMu(r)

cos bt u(t)

sin bt u(t)

e cos bt u(t)

e sin bt u(t)

X(s)

1
S—A
1
(s—1)
n!
s
b
s+a
b

BT
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Pair 5 here is MOST important. You will find that most systems will have terms in

the form ofﬁ in the s-domain. The time domain equivalent of this is a causal

exponential function e*tu(t). The unity step function u(t) makes this causal,
meaning that it is zero for t < 0. The term e*! is the general solution for most
differential equations. It represents the natural response of many physical systems.

Pairs 8a and 8b are also important because they represent the LT of causal sine and

cosine waveforms.

Finally, 9a and 9b represents exponential decaying, causal sine and cosine,

something that occurs frequently in the physical world.




Finding Inverse Laplace Transform via partial fraction

(use partial fraction)

1
Finding inverse Laplace transform of y(s) L /I/
S s+ /¢

e ke

s+l s s+l

To find k; which corresponds to the term (s+0) in denominator, cover up (s+0)
in Y(s), and substitute s = 0 (i.e. s+0=0) in the remaining expression:

X —1x 1/
isTs+1,

Y(s) = %x

=1

s=0

Similarly for k, cover the (s+1/1) term, and substitute s = -1/t, we get:

k =1x ks =-1
T

=1
Therefore 1 1 ==t

Y(s)=—-—
© =531,
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Now that we have learned about forward and inverse Laplace transform, let us find
y(t) for our simple circuit assuming that the circuit input is a step function of
magnitude V. To simplify things a bit, let us assume that V=1, and

1 1/
Y(S) =;Xs+1/T

How can we find the inverse Laplace transform of Y(s) to obtain y(t)?

For this, we need to:

1.

Factorise the numerator and denominator of Y(s) (i.e. turn them into products of
terms in the form of (s + a), where a is a constant, and s is the complex Laplace
variable.

We then use partial fraction to turn each product terms into the form:

k k k
— 4+ 2+ + -
st+a; s+a; s+an

We then computer the constants k; using the technique shown here.

To find k7, which corresponds to the term 1/s, we first “cover” 1/s (i.e. remove
this from the expression), and substitute s = 0 into the remaining expression.

To find k5, which corresponds to the term 1/(s + 1/t), we first “cover” 1/(s + 1/7)
(i.e. remove this from the expression), and substitute s = - 1/t into the
remaining expression. (We use the solution of (s + 1/1) = 0 for this.)

This technique works for all partial fraction calculations.




From Laplace Domain back to Time Domain

1
v @ =Vu@®) Y(s) = H(s)X(s) = vx§><'s +/I/
! 1 s-domain analysis , T
QML f He) =—Lx L =y y(t) =2
1 s+1/z
X(S) = VX;
1 1
¢ So,weget: Y(s)= VE——7)
s s+1/;
L 1
¢ Use Laplace Transform table, pair 5: e'“u(t) = —

S—

LYy(s)}=vL? {% -

_t _t
" 1/1} =V (u(t) —eT u(t)) =VX(1—e T)Xu(t)

+ Same as results from slide 2 using differential equation.
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Now that we have rearrange Y(s) into partial fractions, we can perform the inverse
. , 1
transform easily because each term is of the form —

Using tranform table, Pair 5, we found that the inverse transform of each of the
terms ﬁ get a time domain response of the form e*tu(t)!

For our circuit, we obtain the same results as before: it is a rising exponential from 0
to V with a time constant of .

Such exponential signal is something you have encountered as early as Lab 1 of
DE1.3 last year. It is one of the most common behaviour of many systems.




Another Examples of Inverse Laplace Transform

less straight forward. If the
power of numerator polynomial (M) is the same as that of denominator

25?45 2+5 ~
+ Solve for k; and k; via “covering”: ol e S T
25 +5 i 8+5
7 13 ky = ——— . c— ]
L 4 Therefore X(\) =2 — = o k2 (s + l)(s+2) = =y 13

¢ Using pairs 1 & 5:

x(t) =28(t) + (Te™" — 13¢~*)u(r)
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Here is yet another example to demonstrate how we might find the inverse
transform of a function in s-domain. Follow this through yourself in your spare
time, to make sure that you understand this.




Transfer function of a light bulb

+ InLab 2, we use the Bulb Box system, and it was known that the light bulb
part of the system has a transfer function as shown:

p(t) y(t) P(s) : Y(s)
m— |ight bulb w— B(s)=————— p—p

0.038s5+1

+ Therefore the light bulb itself has an exponential response with a time
constant t= 38 ms.

+ Remember, for a 1% order system, the output step response reaches the
following percentages of final value after n x T, n=1,2,3,...:

Time = T 27 3t 4t
Final value 63.2% 86.5% 95% 98.2%
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Now let us look at a real physical 1 order system. You were using the Bulb Box in
Lab 2, which consist of the light bulb circuit (and a 2" order electronic system
before that, which we will ignore for now).

The Transfer function of the light bulb part of the system:

1
B() = o385 71

From the results we got in previous slide, the step response of the light bulb is a
rising exponential with a time constant of T =0.038.

This means that the filament in the bulb takes time to heat up, and its illumination
rises exponentially with a time constant t of 38ms!

Let me remind you that in such a system, the signal reaches 63.2% after the time =
time constant (i.e. 38ms in our case). The table above shows how long it takes to
reach different % of final values in the case of a 1t order system.




From Transfer function to Frequency Response

+ Once you know the transfer function B(s) of a system, you can evaluate its
frequency response by evaluating H(s) at s = jo:

B(jw) = B(s)

s=jw

+ Therefore, for our light bulb (not including the 2" order electronic circuit,
the frequency response is:

B(jw) = !

(1 + 0.038s)

s=jw
. 1 1
1B(w)| = |(1+0.038jw)| ~ V1+0.0382w?

+ From DE1.3, you know that this is a low pass filter — gain drops with
increasing frequency.
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Let us compare the formal definition of Laplace and Fourier transforms for a causal

signal: o

L{x(t)}=X(s) = f x(t)e Stdt
0

[0.0)

Fix(®)} = X(w) = j x(t)e I@tdt

0

Therefore, we can find the Fourier transform of any function or signal, by
substituting s = jo into the Laplace domain function or signal.

In other words, the Frequency response of a system can be computed with:

H(w) = H(s)

S=jw
The notation here means: evaluate H(s) by substituting s=jm into the equation.
With this, we can calculate the frequency response of the light bulb. It is effectively

a lowpass filter with very low frequency cutoff frequency (i.e. start to tail off at low
frequency).




Transfer Function of a 2™ order system

+ Let us consider a general second order system with a transfer function of
the general form:
Hs) = Y(s) _ b,s? + bys + b,
X(s) s?4+a;s+ag
+ To simplify the problem a bit, let us assuming that b2 = b1 = 0. The above
equation can be rewritten as:

bg wo°
H(s) == =K— >
s“+a;s+ag §4 4+ 2 wos + wy
¢ where:
e wo=+/ay, the resonant (or natural) frequency in rad/sec
o (= 2 ) the damping factor (no unit) (pronounced as zeta)
2@,
b
o K= a—° , gain of the system
0
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Now let us move to a 2"? order system. A general 2"¢ order system transfer function

takes the form: 2
Y(s)  bys®+ bys + by
~X(s)  sZ+aj;s+ag

Let us simplify this by assuming that b, and by are both zero. This gives us the
transfer function found in many systems, including the one we use for Lab 2, of:

2
by Wy

H(s) = =K
(s) s+ a5+ ag S%2 + 20 WS + wy?

The reason for this rearrangement of the equation is that the new form provides
parameters (i.e. values which are constants) that have physical meaning.

Wy is the natural or resonant frequency — the frequency that the system will tend to
oscillate at.

¢ is the damping factor. It value is centred around 1. At 1, the system is known as
critically damped (will be discussed later). If { <1, then the system will oscillate
when “kicked” by a transient such as a step function. If { > 1, then the system is
behaving slower than it need be.

K is the gain at zero frequency, which is the DC gain.




Physical meaning of wg, ¢, and K

+ Let us take the transfer function H(s) of the 24 order system used in Bulb Box as
an example:

Electronic Circuit to p(t)
Xt P(s
u emulate a 2" order ‘ X(S—’) H(s)= 1000 _’( )

. 2
oscillatory system s~ +5s+1000

° wy=.ay,=31.62, the resonant frequency = 5Hz
_a 5 . . _
o (= e~ 2Vioos - 0.079 the damping factor (very small, ideal = 1)
b
e K= ;‘? =1, gain of the system at DC or zero frequency

+ Since the damping factor is very small (much smaller than 1), this system
is highly oscillatory.
bo wo?

=K
s2 +ays + ag 52+ 2{wys + w2

H(s) =
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Let us consider our Bulb Box system in Lab 2. The second order electronic circuit
has a transfer function as shown.

The resonant frequency is 31.62 rad/sec, or 5 Hz. The damping factor is 0.079,
which is way below 1, hence the system is very prone to oscillation. K is of the
circuit is 1.




The importance of damping factor

Let us consider the transfer function H(s) again:

b, wo?
=K
s2+a;5+ag 52 + 20{w,S + wy?

H(s) =

The unit step response of the system is (i.e. x(t) = u(t), and X(s) = 1/s):
wy?

1 1
Y() =SHE) =SK 3 + 2{wys + wy2

We want to say something about the dynamic characteristic of this system by
finding the natural frequency w, and the damping factor ¢.

To do that, we find need to find the root of the quadratic: s+ 2¢wos + woz

_ —2wg £/ (2§w)* —4wy?
B 2

=~y  @3Z=1
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Why is this form of the equation important for a 2" order system? Let us consider
what happens if we apply a unity step function to it. The output of the system Y(s)
is as shown.

We have seen before that to get the time domain output y(t), we need to take the
inverse Laplace of this function. To do that, we need to first factorise the
denominator, particularly the quadratic function: s% + 2{wys + w,?

The root of this quadratic is well-known:

¢ = —2{w, \/(22(0)0)2 —4w,? = —(w, + wo\/qz -1




Five cases of behaviour

+ Depending on the value of the damping factor ¢, there are five cases of
interest, each having a specific behaviour:

b wo?
H(s) == - =K ° Z
s+ a8 +ag 5%+ 2{wys + wg
+ Root of denominator: s=—{wy + wy/{%2—-1
Name | Valueofl Roots of s Characteristics of "s"
Overdamped | 1 S =-Lo a + » tz -1 Two real and negative roots
Critically _ — . .
Damped =1 | S = -0, A single negative roots
- . - Complex conjugate
f 2
Underdamped| 0O<i<1 |5 = Lo, + Jo, 1-C (= v-1):
Undamped =0 S = ij(«)o Pure imaginary (no real part)

Exponential ‘ . 2 _1 Roots may be complex or real,
Growth ¢<0 S =-Lo, oI -1 but the real part of s is always positive
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This result is important. We will examine this in another lecture when we consider
how to gain insights into a system via something called “poles” and “zeros” in a later
lecture.

For now, remember that the root for s in the partial fraction process is given by:

s=—(wy + w/2 —1
The value s take on a property depending on the value of the damping factor (!

If { =1, the square root term = 0, and we have s = -my. We have a single negative
root and the system has an exponential behaviour without any oscillation. The
system is now CRITICALLY DAMPED - that is, while there is no oscillation, yet it
approaches the final value of a step response fastest.

However, if  is below 1, (but above 0), like our Bulb Box system where ¢ = 0.079,
the square root term is negative. The root is now a complex number with an

imaginary part.
S s = ¢y T jon/T—3?

The system is underdamped and imaginary part of the root indicates that there is
oscillation in the system.

The table here shows the five different mode of behaviour in the system depending
on the value of the damping factor ¢ .




Step Response for different damping factors

2 : ' ; ! ;

18 .; ......... underdamped E—— . ........... , ............ g ............

|- USSR SOV WSSOI SR

.......

a0

25 30
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For a second order system, the unit step response is shown here for different value
of {.




Step Response at wg, ¢ = 0.2

A0
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Now let us fix { = 0.2 and change the resonant frequency ®y. Note that the time it
takes for the signal to reach (nearly) the final value is related to the number of
cycles of oscillation.




Frequency response of 2"d order system

underdamped

Overdamped

0.1

RN T
LELLLLELL

.
T

0.01 -ttt -+ttt —t
0.01 0.1 I
Normalised frequency w/w,
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Finally, if we substitute s = jw into the transfer function of the second order system
and compute the system gain at different frequency (the same as what you did in
Lab 2, exercise 2), you get the frequency response as that shown in the slide.

Here we normalise the frequency axis with the resonant frequency wg and plot the
system gain for different damping factor value.

Both axes are plotted in log scale. As can be seen, the system has a high gain at or
around the resonant frequency, explaining why it has a tendency to oscillate at this
frequency.




A video demonstrating an underdamped oscillatory system

BRIDGE COLLAPSE

Length of center span

Width
Depth of stiffening girders

Start of con
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This video is that of a famous Tacoma bridge in USA that collapsed. It demonstrate
how a poorly damped (underdamped) system would oscillate at the resonant
frequency when there is gust of wind blowing onto in.

Sudden gust of wind is like having a step function at the input of the system. If the
wind is also “oscillating” at or around the resonant frequency, the input is
“amplified” by the oscillatory response of the system. Our underdamped Bulb Box
system is mimicking such a behavour at a resonant frequency of 5 Hz.

https://www.youtube.com/watch?v=3mclp9QmCGs




The Millennium Bridge
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You must have heard of the phrase “history always repeats itself’. This is a
very interesting example. In 2000, London opened its newest designed
pedestrian bridge linking St Paul cathedral and the Tate Modern Gallery.
Shortly after it was opened, it had to be closed. The designers did not expect

the bridge would wobble side ways when pedestrians walk on it. Here is a
video of what happens.

https://www.youtube.com/watch?v=y2FaOJxWqLE ?, . .




