
In this lecture, I will continue to consider Laplace transform, particularly for a 1st

order and a 2nd order system.  I will develop some insights into how these systems 
behave both in the time domain in response to a step input, and in the frequency 
domain (that is, in response to sinusoids at different frequencies).



Let us first consider a simple RC circuit, which you have learn from last year.  This 
slide is taken from Lecture 8, slide 3. from DE1.3 last year. Here I assume that you 
are familiar with solving first-order differential equations from your maths lectures.
We want to solve (x(t) = V u(t)):

Integrate both sides, we get:
where A is constant of integration

Use boundary condition: when t= 0, y = 0:
Therefore
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In the previous slide, we use time domain analysis and differential equations. Now 
let us move to the Laplace s-domain, and use Transfer function to do the same 
analysis.  The top diagram is the time domain view of things.
Let us first take the Laplace transform of the input x(t) = V u(t):

Remember that, from L6 S13, we know the LT of unity step function u(t) is 1/s.
Now we take the Laplace transform of the differential equation, remembering from 
L6 S15  that:

Therefore:

Finally, we known
Therefore:

However, we are interested in y(t), not Y(s). So how do we convert from Laplace 
domain back to time domain?  For that, we need inverse Laplace Transform.
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During the lecture, I will go through the next few slides quickly because these are 
mostly included for completeness.  We don’t usually perform Laplace Transform 
mathematically by hand.  Instead we would use a table and look the LT results up.  
Nevertheless, you should at least remember the definition of the forward transform.

Here is a reminder of the equation for forward Laplace transform for a causal signal 
is shown here.  You need to remember this!

The inverse Laplace transform is more complicated. It is defined below. You DO NOT 
need to remember this.

For this course (and for most practical applications), we DO NOT calculate the 
inverse Laplace transform by hand.  Instead, we do most of the forward and inverse 
transformations via looking up a transform a table.  I have included these formulae 
here just for completeness and for reference.  
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0

∞
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∫



The table of Laplace transform pairs (going both directions) is taken from Lathi’s
book.  The first TWO shown here are useful, particularly for signals and systems.
The first pair is the impulse function.  The LT is the constant 1.
Pair 2 is the LT of the unity step function, and we have seen in L6 S13 that this is 
computed to be 1/s.



Pair 5 here is MOST important.  You will find that most systems will have terms in 
the form of C

D8E
in the s-domain.  The time domain equivalent of this is a causal 

exponential function 𝑒E4𝑢(𝑡).  The unity step function u(t) makes this causal, 
meaning that it is zero for t < 0.   The term 𝑒E4 is the general solution for most 
differential equations.  It represents the natural response of many physical systems.
Pairs 8a and 8b are also important because they represent the LT of causal sine and 
cosine waveforms.
Finally, 9a and 9b represents exponential decaying, causal sine and cosine, 
something that occurs frequently in the physical world.



Now that we have learned about forward and inverse Laplace transform, let us find 
y(t) for our simple circuit assuming that the circuit input is a step function of 
magnitude V.  To simplify things a bit, let us assume that V = 1, and 

How can we find the inverse Laplace transform of Y(s) to obtain y(t)?
For this, we need to:
1. Factorise the numerator and denominator of Y(s) (i.e. turn them into products of 

terms in the form of (s + a), where a is a constant, and s is the complex Laplace 
variable.

2. We then use partial fraction to turn each product terms into the form:

3. We then computer the constants ki using the technique shown here.
4. To find k1, which corresponds to the term 1/s, we first ”cover” 1/s (i.e. remove 

this from the expression), and substitute s = 0 into the remaining expression.
5. To find k2, which corresponds to the term 1/(s + 1/t), we first ”cover” 1/(s + 1/t) 

(i.e. remove this from the expression), and substitute s = - 1/t  into the 
remaining expression.  (We use the solution of (s + 1/t) = 0 for this.)

This technique works for all partial fraction calculations.
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Now that we have rearrange Y(s) into partial fractions, we can perform the inverse 

transform easily because each term is of the form   
C

D 8 E
.

Using tranform table, Pair 5, we found that the inverse transform of each of the 
terms C

D 8 E
get a time domain response of the form   𝑒E4𝑢 𝑡 !

For our circuit, we obtain the same results as before: it is a rising exponential from 0 
to V with a time constant of t.
Such exponential signal is something you have encountered as early as Lab 1 of 
DE1.3 last year.  It is one of the most common behaviour of many systems.



Here is yet another example to demonstrate how we might find the inverse 
transform of a function in s-domain.  Follow this through yourself in your spare 
time, to make sure that you understand this.



Now let us look at a real physical 1st order system.  You were using the Bulb Box in 
Lab 2, which consist of the light bulb circuit (and a 2nd order electronic system 
before that, which we will ignore for now).
The Transfer function of the light bulb part of the system:

𝐵 𝑠 =
1

0.038𝑠 + 1
From the results we got in previous slide, the step response of the light bulb is a 
rising exponential with a time constant of  t = 0.038.

This means that the filament in the bulb takes time to heat up, and its illumination 
rises exponentially with a time constant t of 38ms!

Let me remind you that in such a system, the signal reaches 63.2% after the time = 
time constant (i.e. 38ms in our case).  The table above shows how long it takes to 
reach different % of final values in the case of a 1st order system.



Let us compare the formal definition of Laplace and Fourier transforms for a causal 
signal:

Therefore, we can find the Fourier transform of any function or signal, by 
substituting s = jw into the Laplace domain function or signal.

In other words, the Frequency response of a system can be computed with:

The notation here means:  evaluate H(s) by substituting s=jw into the equation.

With this, we can calculate the frequency response of the light bulb.  It is effectively 
a lowpass filter with very low frequency cutoff frequency (i.e. start to tail off at low 
frequency).

ℱ{𝑥 𝑡 } = 𝑋 𝜔 = V
W

X
𝑥(𝑡)𝑒8YZ4𝑑𝑡

ℒ{𝑥 𝑡 } = 𝑋 𝑠 = V
W

X
𝑥(𝑡)𝑒8D4𝑑𝑡

𝐻 𝜔 = [𝐻(𝑠)
D\YZ



Now let us move to a 2nd order system.  A general 2nd order system transfer function 
takes the form:

Let us simplify this by assuming that b2 and b1 are both zero.  This gives us the 
transfer function found in many systems, including the one we use for Lab 2, of:

The reason for this rearrangement of the equation is that the new form provides 
parameters (i.e. values which are constants) that have physical meaning.
𝜔W is the natural or resonant frequency – the frequency that the system will tend to 

oscillate at.
𝜁 is the damping factor.  It value is centred around 1.  At 1, the system is known as 

critically damped (will be discussed later).  If 𝜁 < 1, then the system will oscillate 
when “kicked” by a transient such as a step function.  If 𝜁 > 1, then the system is 
behaving slower than it need be.

K    is the gain at zero frequency, which is the DC gain.
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Let us consider our Bulb Box system in Lab 2.  The second order electronic circuit 
has a transfer function as shown.
The resonant frequency is 31.62 rad/sec, or 5 Hz.  The damping factor is 0.079, 
which is way below 1, hence the system is very prone to oscillation.  K is of the 
circuit is 1.



Why is this form of the equation important for a 2nd order system?  Let us consider 
what happens if we apply a unity step function to it.  The output of the system Y(s) 
is as shown.
We have seen before that to get the time domain output y(t), we need to take the 
inverse Laplace of this function.  To do that, we need to first factorise the 
denominator, particularly the quadratic function:  𝑠_ + 2𝜁𝜔W𝑠 +𝜔W_

The root of this quadratic is well-known:

𝑠 =
−2𝜁𝜔W ± (2𝜁𝜔W)_ −4𝜔W_

2 = −𝜁𝜔W ± 𝜔W 𝜁_ − 1



This result is important.  We will examine this in another lecture when we consider 
how to gain insights into a system via something called “poles” and “zeros” in a later 
lecture.
For now, remember that the root for s in the partial fraction process is given by:

The value s take on a property depending on the value of the damping factor 𝜁!
If 𝜁 = 1, the square root term = 0, and we have s = -w0.  We have a single negative 
root and the system has an exponential behaviour without any oscillation. The 
system is now CRITICALLY DAMPED - that is, while there is no oscillation, yet it 
approaches the final value of a step response fastest.
However, if 𝜁 is below 1, (but above 0), like our Bulb Box system where 𝜁 = 0.079, 
the square root term is negative. The root is now a complex number with an 
imaginary part.

The system is underdamped and imaginary part of the root indicates that there is 
oscillation in the system. 
The table here shows the five different mode of behaviour in the system depending 
on the value of the damping factor 𝜁 .

𝑠 = −𝜁𝜔W ± 𝜔W 𝜁_ − 1

𝑠 = −𝜁𝜔W ± 𝑗𝜔W 1 − 𝜁_



For a second order system, the unit step response is shown here for different value 
of 𝜁 .



Now let us fix 𝜁 = 0.2 and change the resonant frequency w0.  Note that the time it 
takes for the signal to reach (nearly) the final value is related to the number of 
cycles of oscillation.



Finally, if we substitute s = jw into the transfer function of the second order system 
and compute the system gain at different frequency (the same as what you did in 
Lab 2, exercise 2), you get the frequency response as that shown in the slide.
Here we normalise the frequency axis with the resonant frequency w0 and plot the 
system gain for different damping factor value.  
Both axes are plotted in log scale.  As can be seen, the system has a high gain at or 
around the resonant frequency, explaining why it has a tendency to oscillate at this 
frequency.



This video is that of a famous Tacoma bridge in USA that collapsed. It demonstrate 
how a poorly damped (underdamped) system would oscillate at the resonant 
frequency when there is gust of wind blowing onto in.  
Sudden gust of wind is like having a step function at the input of the system.  If the 
wind is also “oscillating” at or around the resonant frequency, the input is 
“amplified” by the oscillatory response of the system.  Our underdamped Bulb Box 
system is mimicking such a behavour at a resonant frequency of 5 Hz.

https://www.youtube.com/watch?v=3mclp9QmCGs



You must have heard of the phrase “history always repeats itself”.  This is a 
very interesting example. In 2000, London opened its newest designed 
pedestrian bridge linking St Paul cathedral and the Tate Modern Gallery.
Shortly after it was opened, it had to be closed.  The designers did not expect 
the bridge would wobble side ways when pedestrians walk on it.  Here is a 
video of what happens.

https://www.youtube.com/watch?v=y2FaOJxWqLE


